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Article History Abstract − Boundary extraction in remote sensing has an important task in studies such as environmental observation, 

risk management and monitoring urban growth. Although significant progress has been made in the different 

calculation methods proposed, there are issues that need improvement, especially in terms of accuracy, efficiency 

and speed. In this study, dual stream network architecture of three different models that can obtain boundary 

extraction by using normalized Digital Surface Model (nDSM), Normalized Difference Vegetation Index (NDVI) 

and Near-Infrared (IR) band as the second stream, was explained. Model I is designed as the original HED, whereas 

the second stream of Model II, III, and IV use nDSM, nDSM + NDVI and nDSM + NDVI + IR, respectively. Thus, 

by comparing the models trained based on different data combinations, the contribution of different input data to the 

success of boundary extraction was revealed. For the training of the models, boundary maps produced from The 

International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam data set and input datasets 

augmented by rotation, mirroring and rotation were used. When the test results obtained from two-stream and multi-

data-based models are evaluated, 11% higher recall values have achieved with Model IV compared to the original 

HED. The outcomes clearly revealed the importance of using multispectral band, height data and vegetation 

information as input data in boundary extraction beside commonly used RGB images.  
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1. Introduction 

The studies for automatic extraction of natural and man-made object boundaries from optical images 

obtained from aerial cameras and satellite sensors have been carried out by Geomatics and Computer vision 

disciplines for many years and are still up-to-date with increasing interest. Automatic object extraction, which 

is particularly one of the main topics in Photogrammetry and Remote Sensing (RS) disciplines, has a very 

important task in environmental monitoring, risk management, precision agriculture, and effective database 

updating for Geographic Information Systems. Different methods have been used in the semantic classification 

studies that started in the 80's until today. Cheng et al. (2016) includes a comprehensive review of the studies 

conducted in this field. Although significant progress has been made with the different algorithms and methods, 

there are issues that need improvement, especially in terms of accuracy, efficiency and speed. 

While the extraction methods continue to improve, on the other hand, the increasing image resolutions in 

parallel with the developments in sensor technologies have made new researches in semantic classification 

studies necessary. Since the early satellite images with low spatial resolution generally did not allow object 
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extraction, semantic classification studies were mostly carried out to obtain regional features. However, thanks 

to the increased spatial resolutions (SPOT, Pleiades, aerial photographs, etc.) as the result of the development 

in image technology, it became possible to automatically extract objects and determine object boundaries; 

studies have focused on these areas. On the other hand, the visibility of complex object geometries with high 

resolution necessitated the development of semantic classification methods. Automatic object extraction, 

which will form a basis for high-accuracy studies such as engineering projects, cadastral studies, through high-

resolution remote sensing images and aerial photographs, is one of the most challenging issues in this field 

(Han et al., 2017; Altınoluk et al., 2020). 

In recent years, it has been observed that deep convolutional neural networks (DCNN) have an important place 

in semantic classification and object boundary extraction studies on remote sensing images. According to many 

researchers, the success of deep networks stems from their ability to learn end-to-end efficient matching 

between raw images and class labels (Kinzie & Kuh, 2004; Marmanis et al., 2018). Many classifications and 

object extraction studies have been carried out on remote sensing images by using Deep Networks with 

different architectures. Guo et al. (2018) and Yuan et al. (2021) discusses the many deep learning methods 

used in remote sensing in detail. In these studies, the errors occurring especially at the object boundaries 

revealed the need for studies on the extraction of the boundaries that determine the linear object edges. 

Hariharan et al. (2011) proposed a method using an image-based weighted feature vector with the object 

definition frame, also known as the activation window in order to determine the boundary lines belonging to 

the object. Then, the final boundary lines of the whole image were formed by combining the border lines 

obtained from the detected objects in different categories. The combination used in this study has formed the 

basis for deep learning methods in determining object boundaries. Shen et al. (2015) used a customized training 

method by classifying line data in convolutional networks into subclasses depending on their shapes. In this 

method, positive loss function based on all class assignments is used and the loss is dealt out among subclasses. 

Later, because the shapes of the sub-classes are different from each other, a different model parameter was 

determined for each subclass and these classes were trained. 

The one of the most cited studies in the literature for border detection is the Holistically-nested Edge Detection 

(HED) method (Xie & Tu, 2015). In HED, holistic expression means that a network can obtain edge map 

directly from image input, and nested expression represents using side outputs. HED, which was created using 

the Deep Supervised Network structure (Lee et al., 2015) and pre-trained VGG network parameters, has 

provided significant improvements in object boundaries and edge detection. Kokkinos (2015) developed HED 

with a multi-scale approach that designs different dimensions of the image pyramid as a single HED. 

Edge extraction is considered with different task descriptions in networks that can perform multiple tasks 

instead of a single task. In their study, Kokkinos (2017) developed a network called UBERNet, which is 

suitable for the need for training data in different content for different tasks including edge extraction and the 

need for increased computing load due to multitasking. UBERNet is a fully convolutional network designed 

with task-oriented special layers placed on the basis of the VGG network. Network highlights can be expressed 

as follows: Bringing together the upper layers and middle layers by skipping layers, and making use of the 

spatial knowledge of lower level neurons in edge extraction, reducing slow learning rates with batch 

normalization in the middle layers and applying extended convolution. Chen et al. (2016) used the low-level 

layers of the DeepLab network (Chen et al., 2014) for edge detection with semantic segmentation as well as 

edge estimation, and obtained the improved semantic map from the results with an end-to-end architecture. On 

the other hand, Dai et al. (2016) performed a semantic segmentation that is sensitive to each object instance, 

in other words, identifying the object instances separately. This architecture, which was developed as 

multitasking and end-to-end, revealed the object examples of a class by sharing the property maps of three 

separate tasks. 
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In another study on segment boundaries, Ultrametric Contour Map was obtained by combining the horizontal 

and vertical orientations of multi-scale border lines and feature maps created as side outputs of the convolution 

network (Maninis et al., 2017). Marmanis et al. (2018) tried to minimize the edge defects that occur as a result 

of semantic segmentation by defining the HED and SegNet architecture for the remote sensing images in an 

integrated network for spectral, DSM and nDSM datasets in a multi-scale. In this study, double-stream HED-

H and Segnet-H architectures are proposed instead of classical architectures by including height data as the 

second input data in education. CaseNet, which aims to determine the classes to which the borderlines belong, 

was developed on the layer jump and ResNet architecture, which shares the category-dependent edge 

activations in the top convolution layer and combines them with the lower layer property map (Yu et al., 2017). 

This study identified edge semantics despite some class inconsistencies. Bokhovkin &  Burnaev  (2019) 

proposes a novel loss function, namely a differentiable surrogate of a metric accounting accuracy of boundary 

detection. In the study, validation of proposed loss function is carried out with various modifications of UNet 

architecture on a synthetic dataset as well as real-world data.  Alam et. al. (2021) proposes an improved 

Encoder-Decoder deep learning model that combines SegNet with index pooling and adapted U-net for suitable 

for multi-targets semantic segmen-tation of RS images. In the study, it is stated that by index pooling it is 

possible to obtain a more clear details for the segmentation of the edges.   

However, recent related works have not shown how remote sensing-oriented datasets such as near-infrared 

band, height information, vegetation index might contribute to boundary extraction in deep learning. In this 

study, a dual stream network architecture that is able to extract object boundaries utilizing nDSM, NDVI and 

IR as additional data types for the RGB band information is proposed. In addition, the contribution of data 

types to the success of boundary inference was revealed by comparing the models trained based on different 

data combinations. 

2. Data Preparation 

In this study, The Potsdam dataset, which has been accessed within the scope of the International Society 

for Photogrammetry and Remote Sensing - Working Group III/4 was used (Rottensteiner et al., 2012). The 

datasets include true orthophotos, Digital Surface Models (DSMs) and ground truths produced from true 

orthophoto mosaic. True orthophotos and DSMs are in 5 cm ground sampling distances, Universal Transverse 

Mercator (UTM) projection and WGS84 datum. True-orthophotos and DSMs are available in 38 pieces of 

6000 x 6000 pixel sizes, and 24 training and 14 test ground truths are available in tiff image format. True 

orthophotos are presented as three different combinations of four bands with 8-bit spectral resolution: Red-

Green-Blue-Infrared (RGBIR), Infrared-Red-Green (IRRG) and Red-Green-Blue (RGB). In addition to DSMs 

presented with values encoded in 32-bit float data type, Normalized Digital Surface Models (nDSMs) produced 

by subtracting surface heights from digital elevation models are also included as an image data in jpeg image 

format. 

In the preparation of the data, considering GPU memory limits and unintentional memorization, the 

appropriate image size for the input data was determined as 800 x 800 pixels with a 150 pixels overlap. As a 

result of this approach, 81 input data were generated from each image of 6000 x 6000 pixels. On the other 

hand, data augmentation should be considered to expand limited datasets as it can improve the performance of 

deep learning models (Shorten and Khoshgoftaar, 2019). Particularly, the brightness values of RGB and IR 

data were changed by ± 50%, by predicting the effect of different image acquisition angles and reflection 

differences. Figure 1 depicts the effect of rotation, mirroring and contrast changes for an RGB image after 

augmentation was implemented. RGB, nDSM, NDVI, IR and label data were mirrored and the original and 

mirrored images were rotated 90, 180 and 270 degrees. Therefore, the original RGB, IR datasets and nDSM, 

NDVI, label datasets were augmented 24 times and 8 times, respectively. The number of datasets resulting 

from this approach is given in Table 1. All input data preparation processes were coded and carried out in 

GNU Octave environment. 
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Four different datasets RGB, nDSM, NDVI and IR extracted from the Potsdam benchmark were defined 

as input sets in the study. Single band IR datasets were sliced from the RGBIR images and NDVI datasets 

were calculated and produced using the first and fourth bands of RGBIR true orthophotos. To produce labels 

for boundary data, the segmented label data containing border information have been processed.  

 

Figure 1. Augmentation result of an RGB image for rotation (r) in degrees, mirroring (m) and contrast 

change (cc) 

Table 1  

Number of augmented samples 

Data type Rotation Mirroring Contrast Number of samples 

RGB + + + 73872 

nDSM + + - 24624 

NDVI + + - 24624 

IR + + + 73872 

Label + + - 24624 

Total    221616 

3. Methods 

Four models, Model I, II, III and IV have been discussed in this paper to determine data contribution to 

boundary extraction. Model I (Xie and Tu, 2015) is composed of one stream HED with RGB input, whereas 

Model II, III and IV are designed with one parallel stream getting additional inputs beside Model 1. Some 



Journal of Advanced Research in Natural and Applied Sciences                                                      2021, Vol. 7, Issue 3, Pages: 358-368 

 

362 

 

combinations of nDSM, NDVI and IR are utilized as inputs of Model II, III, and IV in their second streams, 

while RGB true orthophotos data is used as input in their first stream as shown in Table 2. Marmanis et al. 

(2018) also proposed a dual stream HED that is summarized in Figure 2; however they fed their model with 

only DSM datasets at second branch. 

Table 2  

Input datasets for the models 

Model no First stream Second stream 

I 

II 

III 

RGB 

RGB 

RGB 

- 

nDSM 

nDSM + NDVI 

IV RGB nDSM + NDVI + IR 

 

 

Figure 2. Dual stream model for object boundaries 

 

By using different data types in the training of models, the effect of data other than RGB on the performance 

of the neural network was measured. The first stream was started with VGG-16 weights, but since there were 

no trained models of the input data to be used in the second stream of Models 2 and 3, the random initialization 

method was used initially. Since the input of the second flow of Model 4 is three-layered, the starting weights 
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were transferred from VGG-16 in this flow as well. Dual Stream HED (DS-HED) treats the convolution layers 

before each maximum pooling layer in both streams as a side output layer. Then, deconvolution and balanced 

cross-entropy loss function are applied to the side output layers, respectively, and the object boundary map is 

produced by combining these outputs as mentioned in Xie and Tu (2015). Two-stream net architecture consists 

of 26 convolutions, 10 maximum pooling, and 5 deconvolutions. All tests were carried out on a desktop 

computer including Intel(R) Core(TM) i7-7820X CPU @ 3.60GHz, 2xGeForce RTX 2080 Ti 128 GB RAM.   

4. Results and Discussion 

Determining the most suitable model requires long processing times due to the very high size of the training 

data. In order to make a quick comparison between the performance of different models, an evaluation was 

made using training data sets produced from two selected layouts instead of the entire training data set. Initial 

model training experiments were accomplished by selecting the layouts 2-10 and 5-12 representing different 

characteristics such as buildings, roads and vegetation. Among the HED models trained for class boundaries 

inference, Model I trained with RGB was used as the base comparison model. The performances of Model II 

and Model III that were tested with nDSM and NDVI datasets added to the second stream, including RGB in 

the first stream, examine the success according to Model I. With Model IV, all data of nDSM, NDVI, IR were 

used for the second flow of HED. The graphs of the training and validation loss values generated during the 

training of all models depending on the increasing number of epochs are shown in Figure 3. Since the number 

of training data was kept low in the preliminary evaluation, some deviations were observed in validation values 

due to the number of epochs. Table 3, on the other hand, explains the number of data, the number of epochs 

and the accuracy results of the training based on the map data of all models 2-10 and 5-12. 

True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) numerical values 

were considered to determine the error evaluation and accuracy rates between the predicted results and the 

actual values. With these numeric values, precision, sensitivity and f-score values were calculated with the 

following equations 4.1, 4.2 and 4.3. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
     (4.1) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
      (4.2) 

 

𝑓 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
      (4.3) 

Since the original boundary lines in the ground truth data are thinner and the predicted boundary lines are 

thicker, the pixel predictions that are not lines but within the near area of the original line are assigned as FP 

values and artificially increases the number of FP. In other words, since the difference in line thickness in the 

ground truth data with the boundary lines estimated by the models creates a much higher number of FP values 

compared to FN values, the recall criteria for boundary inference performance are more meaningful than the 

precision and f-score criteria. For this reason, especially high recall values were evaluated as the criterion for 

success, and it was observed that the Model IV reached the highest accuracy as explained in Table 3. An 

increase of 11% was observed in recall values, when Model I were compared to Model IV. 11% rise in recall 

indicates that Model IV as one of our proposed DS-HED architectures outperformed Model I representing the 

original HED. 
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Model Train and validation loss Function error 

I 

  

II 

 

 

III 

  

IV 

  

 
Train loss 

Validation loss 

Train function error 

Validation function error 

Figure 3. The graphs of the training and validation loss for Model I, II, III and IV 
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Table 3  

Accuracy results for the models that were trained using layouts 2-10 and 5-12  

Model 

no 

Batch 

size 

Training 

data # 

Val/Test 

data # 

Epoch Time  

(min) 

Precision Recall F-score 

I 12 130 16/16 43 37 0.2486 0.7638 0.3751 

II 6 130 16/16 53 58 0.2391 0.8390 0.3721 

III 6 130 16/16 48 69 0.2455 0.8222 0.3781 

IV 6 130 16/16 62 63 0.1996 0.8779 0.3253 

 

The model IV, which was determined as the most successful model as a result of the comparison, was 

retrained by using the whole data set and the values in Figure 4 and Table 4 were obtained. Since the land use 

diversity in the data set is higher in the whole data set, a slight decrease was observed in the recall value 

compared to the previous experiment. 

Model Train and validation loss Function error 

IV 

  

 
Train loss 

Validation loss 

Train function error 

Validation function error 

Figure 4. The graphs of the training and validation loss for Model IV based on the whole data 

 

Table 4  

Accuracy results for the models that were trained using the whole layouts  

Model 

no 

Batch 

size 

Training 

data # 

Val/Test 

data # 

Epoch Time 

(hr) 

Precision Recall F-score 

IV 6 3120 384/384 50 10 0.2724 0.8535 0.4130 

 

HED based networks produce side outputs from 800x800 pixel size patches and aggregate these side 

outputs to create the final boundary map.  Sample five side outputs created by the retrained Model IV are 

shown in Figure 5. It is seen that different levels of detail in the image are represented in the side outputs. The 

final boundary map created by the combination of these five side outputs, the ground truth and the original 

input image is shown in Figure 6. 
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Figure 5. Side outputs extracted from Model IV 

 

 

Figure 6. The final boundary map, ground truth and RGB image 

 

Boundary maps were estimated from 800x800 patches from the test layouts with Model IV. All patches 

included in a layout are combined and a 6000x6000 boundary map is created for that layout. Figure 7 shows 

the estimated boundary map, ground truth and RGB images of the five layouts. 

 

Figure 7. First row: Estimated boundaries; Second row: ground truths; Third row: RGB orthophotos. 
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5. Conclusions  

In this study, automatic border extraction, which is an important problem in remote sensing, is discussed 

and models have been created and trained to eliminate the deficiencies in this subject. When the results 

obtained from two-stream and multi-data models are evaluated, an increase in the boundary extraction 

performance has been achieved. This situation revealed that, except from RGB, multispectral bands, height 

information and vegetation information must be used as input data in boundary extraction. It has been observed 

that three-layer data is more advantageous than one or two layers in the second stream, since it allows transfer 

learning. This situation shows that training three data in each stream is an option that should be considered in 

future studies. On the other hand, it is important to find a balance between batch size and input size in order to 

use the GPU memory optimally. In the future, this problem is likely to disappear due to the improvement in 

graphics cards. Another problem encountered was in obtaining ground truth data. It takes a lot of time to 

prepare a data set that presents the boundary data accurately. For this reason, boundary extraction is prepared 

from semantic data with handmade methods. Both the inadequacy of the handmade methods and the border 

uncertainties on the images make ground truth data suspicious. Therefore, it is natural for models trained 

according to these ground truth data to suffer prediction losses due to data instability.  
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